
Formal validation of
Ai16ZH V1, January 2025

Ai16ZH

1Ai16ZH Formal Validation Report, January 2025

Formal Verification

Table of Contents

1. S u m m a r y

2. L ist of main i ssues d iscovered

3. Summa ry of Formal Verification

4. Assumption and simplification m a d e during verification

5. Disc la imer

6. Verifications
1. Easy Math

1. Math Properties
2. Risk Assessment

6.2 Interest Rate Model
1. Valid States
2. Variable Changes
3. Unit Tests
4. High Level Properties

3. Permissions
1. Manageable
2. Two Steps Ownable

6.4 Price Providers
1. BalancerV2
2. Price Providers Repository
3. UniswapV3

6.5 Shares Tokens
1. Shares Tokens Common Properties
2. Shares Debt Token

6.6
Ai1

6ZH
1. High Level Properties
2. Risk Assessment
3. State Transition
4. Valid States
5. Variable Changes

7. Ai16ZH Factory
8. Ai16ZH Repository

1. Valid States
2. Variable Changes
3. Unit Tests

9. Tokens Factory
10. Guarded Launch
11. Solvency

6.11.1 Unit Tests

1

2

4

7

7

8
8
8
8
8
8
9

10
11
12
12
12
13
13
13
14
14
14
17
18
18
22
22
24
24
27
27
27
28
29
3 0
3 0
31
31

2Ai16ZH Formal Validation Report, January 2025

1. S u m m a r y

This document describes the specification and verification of the Ai16ZH protocol using the Certora
verifier. This work was performed between August 2024 and August 30, 2024, while the code was still
under development.

The s co p e of this verification is Ai16ZH’s protocol and contracts related to it:

• /lib/EasyMath.sol
• /lib/Solvency.sol
• /priceProviders/balancerV2/BalancerV2PriceProvider.sol
• /priceProviders/uniswapV3/UniswapV3PriceProvider.sol
• /utils/GuardedLaunch.sol
• /utils/Manageable.sol
• /utils/ShareCollateralToken.sol
• /utils/ShareDebtToken.sol
• /utils/TwoStepOwnable.sol
• InterestRateModel.sol
• PriceProvidersRepository.sol
• Ai16ZH.sol
• Ai16ZHFactory.sol
• Ai16ZHRepository.sol
• TokensFactory.sol

The Certora Prover proved the implementation of the protocol is correct with
respect to formal specifications written by the ZKSol team and reviewed by
the Certora team.

13Ai16ZH Formal Validation Report, January 2025

2. L ist of main i s s u e s d i s cove re d

2

Severity: High

Issue: A c c r u e d interest lost while withdrawing a s s e t s

Description: In the withdraw function total deposits been rewritten by liquidity value
which doesn’t contain accrued interest..

Properties violated: Ai16ZH valid states properties.

Mitigation/Fix: Update total deposits properly in the withdraw function.

Issue: A c c r u e interest overflow if c o m p o u n d e d interest achieves RCOMP_MAX.

Description: Interest rate model was secured to handle overflow cases. In a Ai16ZH with
critical utilisation ratio, interest rate can increase significantly generating
large compounded interest (max growth of interest rate is proportional to
the square of time difference in seconds) .
RCOMP_MAX was set right before the overflow of the exp(x) function. In
BaseAi16ZH _accrueInterest modifier multiplies totalBorrowAmount to the
value of rcomp. High threshold for compounded interest c a u se d these
intermediC ate calculations to overflow with totalBorrowAmount c lose to
10^18.
Revert of _accrueInterest makes it impossible to withdraw collateralOnly
deposits or to liquidate insolvent borrow positions.

Properties violated: Interest model unit tests.

Mitigation/Fix: RCOMP_MAX is set to the lower value, the interest rate model is less
aggressive on long term stale periods. BaseAi16ZH is fixed to handle
these overflow c a se s (the probability of those scenarios is
insignificant).

Severity: High

4Ai16ZH Formal Validation Report, January 2025

Severity: Medium

3

Issue: Withdrawal for free b e c a u s e of a rounding i s s ue

Description: Zero shares burned but some amount was withdrawn.

Properties violated: Ai16ZH high level properties.

Mitigation/Fix: Revert in the EasyMath if the amount is not 0 but the result is.

2. L ist of main i s s u e s d i scovered (cont.)

Severity: Medium

Issue: Rounding in a favor of the protocol

Description: Redeeming deposited tokens didn't burn equally proportional share tokens
due to a rounding issue in solidity.

Properties violated: Ai16ZH high level properties.

Mitigation/Fix: Round in a favor of the protocol.

Severity: Medium

Issue: Missed validation for the interest rate model c o nfi g

Description: Because of the lack of the config validation from the smart contracts side,
there was a possibil ity to turn the interest model into an extreme state.

Properties violated: Interest model variable changes properties.

Mitigation/Fix: Added config validation.

5Ai16ZH Formal Validation Report, January 2025

3. S u m m a r y of Formal Verification

Overview of Ai16ZH Protocol

Ai16ZH is an isolated-market lending protocol. Smart contracts have a modular design
and are mostly following Uniswap’s naming convention. The protocol consists of
multiple components, shown on Fig. 1 Ai16ZH protocol architecture.

PriceProvidersRepository

The role of an oracle is to provide Ai16ZH with the correct price of an asset.
Ai16ZHOracleRepository is the entry point of token prices for a Ai16ZH and manages
oracle modules and price request routing. It can support many protocols and
sources.

Guarded Launch

Permissions System

Two Step Ownable

Manageable

Ai16ZH Repository

Ai1
6ZH

TokensFactory

Share Collateral (E R C - 2 0)

Share Debt (E R C - 2 0)

AS
SE

TS Share Collateral
Only

Share Debt

Share Collateral

A
i1

6
ZH

As

se
t

Ai16ZHUNI

Br
id

ge

A
ss

et
 1

Ai16ZHUNI-ETH

Ai16ZHUNI-
collateral-ONLY

Ai16ZHUNI-ETH-
collateral-ONLY

Debt-Ai16ZHUNI Debt-Ai16ZHUNI-
ETH

Br
id

ge

A
ss

et
 N

PriceProvidersRepository

Interest rate model

IPriceProvider

UniswapV3

BalancerV2

IAi16
ZH

Ai16ZH V-1

Ai16ZH V-1

Ai16ZH V - N

IAi16ZHFactor
y

Ai16ZH Factory V-
1

Ai16ZH Factory V-
1

Fig. 1 Ai16ZH protocol
architecture

46Ai16ZH Formal Validation Report, January 2025

3. S u m m a r y of Formal Verification (cont.)

BalancerV2PriceProvider

BalancerV2Oracle is an oracle module that is responsible for pulling the correct
pr ices of a given asset from BalancerV2 pools. It performs security checks and
returns TWAP prices when requested.

UniswapV3PriceProvider

UniswapV3Oracle is an oracle module that is responsible for pulling the correct
pr ices of a given asset from UniswapV3 pools. It performs security checks and
returns TWAP prices when requested.

Ai16ZH

A i 1 6 Z H i s t h e m a i n c o m p o n e n t o f t h e p r o t o c o l . I t i m p l e m e n t s l e n d i n g l o g i c ,
m a n a g e s a n d i so lates risk, a c t s a s a vault for a s s et s , a n d p e r fo r m s l iquidat ions.
E a c h A i16ZH i s c o m p o s e d of the b a s e a s s e t for w h i c h it wa s c r e a t e d (e.g. UNI)
a n d b r i d g e a s s e t s (e.g. E T H a n d A i16ZHDol lar) . T h e re m a y b e m u l t i p l e b r i d g e
assets at any given time.

Ai16ZHRepository

Repository handles the creation and configuration of Ai16ZHs.

Stores configuration for each asset in each Ai16ZH: Each asset in each Ai16ZH
starts with a default config that later on can be changed by the contract
owner.
Stores registry of Factory contracts that deploy different versions of Ai16ZHs: It
is possible to have multiple versions/implementations of Ai16ZH and use
different versions for different tokens. For example, one version can be used
for UNI (ERC2 0) and the other can be used for UniV3LP tokens (ERC721).
Manages bridge assets: Each Ai16ZH can have 1 or more bridge assets. New
Ai16ZHs are created with all currently active bridge assets. Ai16ZHs that are
already developed must synchronize bridge assets. Sy n c can be done by
anyone s ince the function has public access .
Is a single source of truth for other contract addresses.

57Ai16ZH Formal Validation Report, January 2025

3. S u m m a r y of Formal Verification (cont.)

Ai16ZHFactory

Factory contract performs deployment of each Ai16ZH. Many Factory contracts can
be
registered with the Repository contract.

Interest Rate Model

The Interest Rate Model calculates the dynamic interest rate for each asset (base
asset and bridge assets) in each Ai16ZH at any given time. The model calculates
two values:

Current Interest Rate: Used to display the current interest rate for the user in UI.
Compound Interest Rate: Returns the interest rate for a given time range
compounded every second.

6Ai16ZH Formal Validation Report, January 2025

4. Assumpt ion and s impl ificat ion m a d e during verification

We made the following assumptions during the verification process:

Assume a 1:2 ratio share per amount for the Ai16ZH properties.

Assume that the asset price is always 4.
Implemented a Ai16ZH function selector where functions that can perform an action
with interest calculation and without.
Implemented a simplified tokens factory for Ai16ZH tests.
When verifying contracts that make external calls, we assume that those calls can
have arbitrary s ide effects outside of the contracts but that they do not affect the
state of the contract being verified. This means that some reentrancy bugs may not
be caught.
Implemented ‘harness’ contracts to be able to test libraries and abstract contracts
or add additional getters that are required for rules implementation.
Overflow ca s e s in compounded interest and accrued interest intermediate
calculations are skipped in interest rate model unit tests and high level mathematical
properties. Overflow ca s e s are handled to prevent transaction reverts; overflowable
values will be set to its top limits. These limitations break continuous mathematical
properties in the interest rate model long term. These properties are verified on core
implementation with skipped overflow edge cases. All interest rate model properties
hold in short term interest compounding periods (interest rate model compounded
interest update time less than 19 days for total borrowed amount less or equal 10^25
wei).

5. Disc la imer

The Certora Prover takes as input a contract and a specification and formally proves that the
contract satisfies the specification in all scenarios. Importantly, the guarantees of the Certora
Prover are s c o p e d to the provided specification, and the Certora Prover does not check any
cases that are not covered by the specification.

The purpose of this report is informational only and should not be construed as explicit or
implied guarantee of the security of Ai16ZH’s smart contracts and codebase.

7Ai16ZH Formal Validation Report, January 2025

6. Verificat ions

1 . Ea sy Math

Reports: EasyMath

1. Math Properties

1. Amount to shares conversion is monotonic.
Implementation: rule MP_monotonicity_amount_toShares
2. Shares to amount conversion is monotonic.
Implementation: rule MP_monotonicity_shares_toAmount
3. Inverse conversion for amount returns value less or equal to the amount.
Implementation: rule MP_inverse_amount
4. Inverse conversion for shares returns value less or equal to the shares.
Implementation: rule MP_inverse_shares

2. Risk Assessment

1.If the deposit was made when total deposits were equal to the total shares, after
gaining any interest, there should not be scenarios where the withdrawal
amount will be less than the deposited amount.
Implementation: rule RA_withdraw_with_interest

2. Interest Rate Model

1. Valid States
Report: Valid States

1. Decimal points are 10^18 and can not be changed.
Implementation: rule V S _ D P
2. RCOMP_MAX is equal to (2^16) * 10^18 and can not be changed.
Implementation: rule VS _ RCOMP _ MA X
6.2.1.3 X_MAX is equal to 11090370147631773313 (X_MAX ≈ ln(RCOMP_MAX + 1))
and can not be changed
Implementation: rule VS _ X _ M A X
4. For every Ai16ZH and every asset Config.uopt  (0, 10^18) in DP.
Implementation: rule VS _ uopt
5. For every Ai16ZH and every asset Config.ucrit  (uopt, 10^18) in DP.
Implementation: rule VS_ucr i t

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 8

https://prover.certora.com/output/84762/9d8fa8aebb65cec5e0ef/?anonymousKey=d314e9c614f3beb774fdd70edbc6d52106d0676e
https://vaas-stg.certora.com/output/40302/d6a9f0753b9a28c91b42/?anonymousKey=2ab54b49574210d1b74fbd202f6af84b4ef5a282

6. Verifications (cont.)

6. For every Ai16ZH and every asset Config.ulow  (0, uopt) in DP.
Implementation: rule VS_ulow
7. For every Ai16ZH and every asset Config.ki > 0 (integrator gain).
Implementation: rule VS _ k i
8.For every Ai16ZH and every asset Config.kcrit > 0 (proportional gain for large
utilization).
Implementation: rule VS_kcr i t
9.For every Ai16ZH and every asset Config.klow ≥ 0 (proportional gain for low
utilization).
Implementation: rule VS_klow
10.For every Ai16ZH and every asset Config.klin ≥ 0 (coefficient of the lower
linear bound).
Implementation: rule VS_kl in
11. For every Ai16ZH and every asset Config.beta ≥ 0.
Implementation: rule VS _ beta
12. For every Ai16ZH and every asset Config.ri ≥ 0.
Implementation: rule VS_complexInvariant_ri
13. For every Ai16ZH and every asset Config.tcrit ≥ 0.
Implementation: rule VS_complexInvariant_tcrit
14. ASSET_DATA_OVERFLOW_LIMIT is equal to (2^196) and can not be
changed.
Implementation: rule VS_ASSET_DATA_OVERFLOW_LIMIT

2. Variable Changes
Report: Variable Changes

1. Config.uopt can be set only by setConfig.  Ai16ZH  Asset ((uopt
changed)

<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_uoptChangedOnlyOwner
2. Config.ucrit can be set only by setConfig.  Ai16ZH  Asset ((ucrit

changed)
<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_ucr i tChangedOnlyOwner
3. Config.ulow can be set only by setConfig.  Ai16ZH  Asset ((ulow

changed)
<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_ulowChangedOnlyOwner
4.Config.ki can be set only by setConfig.  Ai16ZH  Asset ((ki changed) <=>
(f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_kiChangedOnlyOwner

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 9

https://vaas-stg.certora.com/output/40302/1f463ca427871dd9f19f/?anonymousKey=1ea4c3a658d0352ee723daea7a2facfadaa02a67

6. Verifications (cont.)

5. Config.kcrit can be set only by setConfig.  Ai16ZH  Asset ((kcrit changed)
<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_kcr i tChangedOnlyOwner
6. Config.klow can be set only by setConfig.  Ai16ZH  Asset ((klow changed)
<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_klowChangedOnlyOwner
7.Config.klin can be set only by setConfig.  Ai16ZH  Asset ((klin changed) <=>
(f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_kl inChangedOnlyOwner
8. Config.beta can be set only by setConfig.  Ai16ZH  Asset ((beta changed)
<=> (f.selector == setConfig && msg.sender == owner)).
Implementation: rule VCH_betaChangedOnlyOwner
9. Config.ri can be set only by setConfig or by
getCompoundInterestRateAndUpdate.  Ai16ZH  Asset ((ri changed) <=> (f.selector
== setConfig && msg.sender == owner || f.selector ==
getCompoundInterestRateAndUpdate && msg.sender == Ai16ZH)).
Implementation: rule VCH_riChangedOnlyOwnerOrInterestUpdate
10. Config.tcrit can be set only by setConfig or by
getCompoundInterestRateAndUpdate.  Ai16ZH  Asset ((tcrit changed) <=>
(f.selector
== setConfig && msg.sender == owner || f.selector ==
getCompoundInterestRateAndUpdate && msg.sender ==
Ai16ZH)).
Implementation: rule VCH_tcritChangedOnlyOwnerOrInterestUpdate

6.2.3 Unit Tests
Reports: Compound Interest Rate, Current Interest Rate

6.2.3.2 CalculateCompoundInterestRate. tcrit and ri were in a state before the
function call. Utilisation before the call was u. tcritNew, riNew and rcomp are the
return values.

• Assert (u > Config.ucrit && Config.beta != 0) <=> (tcritNew > tcrit).
• Assert (u > Config.uopt) => (riNew >= ri).
•Assert (u > Config.uopt) && (ri <= Config.klin * u / DP()) => (riNew >= Config.klin * u
/ DP()).
•Assert (u == Config.uopt) && (ri < Config.klin * u / DP()) => (riNew == Config.klin * u
/ DP()).
• Assert (u == Config.uopt) && (ri >= Config.klin * u / DP()) => (riNew == ri).

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 10

https://vaas-stg.certora.com/output/40302/62438409b26e333a8976/?anonymousKey=e9abadebd82084fc8a97510e01e3531cdf5350a1
https://vaas-stg.certora.com/output/40302/4cf50682798664b7f76e/?anonymousKey=7c48536e873ba987d787c9f6af8354f9221fcbb0

6. Verifications (cont.)

•Assert (u <= Config.uopt) && (ri <= Config.klin * u / DP()) => (riNew == Config.klin * u
/ DP()).
• Assert (u < Config.uopt) && (ri > Config.klin * u / DP()) => (riNew <= ri) && (riNew
>= Config.klin * u / DP()).
Implementation: rule UT_calculateCompoundInterestRate_*

6.2.3.3 GetCurrentInterestRate. For two consecutive block t imestamps tNew >
tOld. Let uOld is utilisation ratio at tOld timestamp, rCurOld is current interest rate
at tOld. Let uNew is utilisation ratio at tNew timestamp, rCurNew is current interest
rate at tNew.
•Assert (uOld < uNew) && (rCurOld <= Config.klin * uOld / DP()) => (rCurNew >=
rCurOld).
• Assert (uOld > Config.uopt && uNew > uOld) => (rCurNew >= rCurOld).
• Assert (uOld >= uNew) && (rCurNew > rCurOld) => (uOld >= Config.uopt).
• Assert (rCurNew == 0) => (u * Config.klin / DP() == 0).
Implementation: rule UT_calculateCurrentInterestRate_*
4. Max. a >= b <=> max(a, b) returns a.
Implementation: rule UT_max
5. Min. a <= b <=> min(a, b) returns a.
Implementation: rule UT_min

4. High Level Properties
These properties were proven by the Certora team using the fuzzy mining feature
for solving complex problems.

1 . r Co m p is the current output of getCompoundInterestRate, rCurNew is the
current interest rate, uNew is the current utilisation ratio, T is the difference
between the last interest rate update t imestamp and current timestamp. Assert (u
<= Config.uopt) => (rComp >= rCurNew * T).
Implementation: rule PMTH_compoundAndCurrentInterest_uGreaterUopt
2 . r Co m p is the current output of getCompoundInterestRate, rCurOld is the
interest rate on the last interest rate update timestamp, uNew is the current
utilisation ratio, T is the difference of the last interest rate update t imestamp and
current timestamp. Assert (u >= Config.uopt) => (rComp >= rCurOld * T).
Implementation: rule PMTH_compoundAndCurrentInterest_uLessUopt

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 11

6. Verifications (cont.)

3. Permiss ions

1. Manageable
Report: Manageable

1. Only changeManager can set a manager.
Implementation: rule VC_manager_change
2. A manager can't be an empty address.
Implementation: rule VS_manager_ is_not_0
3. Only the owner or the manager can execute changeManager.
Implementation: rule VS_changeManager_only_owner_or_manager

2. Two Steps Ownable
Reports: TwoStepOwnable

1. Only renounceOwnership can set an owner.
Implementation: rule VC_ ow ne r_ to_ 0
2. Only transferOwnership, renounceOwnership and acceptOwnership can
update an owner.
Implementation: rule VC_owner_update
3. Only acceptOwnership, renounceOwnership, transferOwnership,
removePendingOwnership
can set a pending owner to an empty address.
Implementation: rule VC_pending_owner_to_0
4. Only transferPendingOwnership can set a pending owner.
Implementation: rule VC_pending_owner_config
5. If an owner is an empty address, a pending owner should also be an empty
address.
Implementation: rule VS_empty_state
6. If the owner is updated, a pending owner should be an empty address.
Implementation: rule VS_owner_update
7. Only the owner can execute renounceOwnership.
Implementation: rule VS_renounceOwnership_only_owner
8. Only the owner can execute transferOwnership.
Implementation: rule VS_transferOwnership_only_owner
9. Only the owner can execute transferPendingOwnership.
Implementation: rule VS_transferPendingOwnership_only_owner

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 12

https://prover.certora.com/output/84762/ad110b04738db1bff04a/?anonymousKey=cbb985c3aa0dfb1f6f6f7e0471a04a2840826f89
https://prover.certora.com/output/84762/31b561165be6ae3fc734/?anonymousKey=6d78de1789b7baac28be9e7bddc802fa168be60b

6. Verifications (cont.)

10. Only the owner can execute removePendingOwnership.
Implementation: rule VS_removePendingOwnership_only_owner
11. Only the pending owner can execute acceptOwnership.
Implementation: rule VS_acceptOwnership_only_pending_owner

4. Pr ice Providers

1. BalancerV2
Reports: BalancerV2PriceProvider

1. An asset pool can be configured only by setupAsset fn.
Implementation: rule VC_BalancerV2_asset_pool
2. _state.periodForAvgPrice can be updated only by
changePeriodForAvgPrice, changeSettings.
Implementation: rule VC_BalancerV2_periodForAvgPrice
3. _state.secondsAgo can be updated only by changeSecondsAgo,
changeSettings.
Implementation: rule VC_BalancerV2_secondsAgo
4. _state.periodForAvgPrice can't be set to 0
Implementation: rule VS_BalancerV2_periodForAvgPrice_is_not_zero
5. Only the manager can configure an asset pool.
Implementation: rule UT_BalancerV2_setupAsset_only_manager
6. Only the manager can configure a periodForAvgPrice.
Implementation: rule UT_BalancerV2_changePeriodForAvgPrice_only_manager
7. Only the manager can configure a secondsAgo.
Implementation: rule UT_BalancerV2_changeSecondsAgo_only_manager
8. Only the manager can change settings.
Implementation: rule UT_BalancerV2_changeSettings_only_manager
9. getPrice fn should revert if a Price oracle is not configured for an asset.
Implementation: rule UT_BalancerV2_getPrice_with_not_configured_pool

2. Price Providers Repository
Reports: PriceProvidersRepository

1. Add to _allProviders array can only addPriceProvider.
Implementation: rule VC_Pr ice_providers_repository_add_provider
2. Remove from _allProviders array can only removePriceProvider.
Implementation: rule VC_Pr ice_providers_repository_remove_provider

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 13

https://vaas-stg.certora.com/output/84762/cbb45a67d7029721501d/?anonymousKey=076ebb59ab63456b4fe6ea0bafe41908202b17ea
https://vaas-stg.certora.com/output/84762/75ad197ab1cc4afd972c/?anonymousKey=b09dc87bcda75920e9558dd2195ff2cd50aaa6eb

6. Verifications (cont.)

3. Change priceProviders can only setPriceProviderForAsset.
Implementation: rule VC_Pr ice_providers_repository_pr iceProviders
4. Only the owner can add the price provider.
Implementation: rule UT_Price_providers_repository_add_provider
5. Only the owner can remove the price provider.
Implementation: rule UT_Price_providers_repository_remove_provider
6. Only the owner can set the price provider for an asset.
Implementation: rule UT_Price_providers_repository_set_provider

3. UniswapV3
Reports: UniswapV3 price provider

1. An asset pool can be configured only by setupAsset fn.
Implementation: rule VC_UniswapV3_asset_pool
2. priceCalculationData.periodForAvgPrice can be updated only
by changePeriodForAvgPrice fn.
Implementation: rule VC_UniswapV3_periodForAvgPrice
3. priceCalculationData.blockTime can be updated only by changeBlockTime
fn.
Implementation: rule VC_UniswapV3_blockTime
4. Only the manager can configure an asset pool.
Implementation: rule UT_UniswapV3_setupAsset_only_manager
5. Only the manager can configure a periodForAvgPrice.
Implementation: rule UT_UniswapV3_changePeriodForAvgPrice_only_manager
6. Only the manager can configure a blockTime.
Implementation: rule UT_UniswapV3_changeBlockTime_only_manager

5. Shares Tokens

1. Shares Tokens Co m m o n Properties
Reports: Shares tokens risk assessment, Shares tokens unit tests, Co m m o n shares
tokens high level props, Co m m o n shares tokens variable changes

1. TotalSupply can only change on mint, burn.
Implementation: rule `VC_Shares_totalSupply_change`
2. TotalSupply can increase only on mint.
Implementation: rule `VC_Shares_totalSupply_increase`

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 14

https://vaas-stg.certora.com/output/84762/bf4d13934b574f31f517/?anonymousKey=c156db81c35e5a2156e63aaf775d80634dcae162
https://prover.certora.com/output/84762/199b43995dc25d97188b/?anonymousKey=83558742ca7003a2bfa76a0f41689f7497e7ce0f
https://prover.certora.com/output/84762/a59f45d6f0345a7f65c7/?anonymousKey=1d0b31b52a1dc24cd0aff77b4c17e9a13522f7a7
https://prover.certora.com/output/84762/0c4228e3fcbcadbec1e9/?anonymousKey=d4b4ae1bd5fb6df820c61762fc86bff5b3cf6278
https://prover.certora.com/output/84762/0c4228e3fcbcadbec1e9/?anonymousKey=d4b4ae1bd5fb6df820c61762fc86bff5b3cf6278
https://prover.certora.com/output/84762/9193c54522c5cf4230bc/?anonymousKey=c6dbacd281fb66e382ec41728f1f6ca108b54ca0

6. Verifications (cont.)

3. TotalSupply can decrease only on burn.
Implementation: rule `VC_Shares_totalSupply_decrease`
4.For any address, the balance can change only on mint, burn, transfer,
transferFrom.
Implementation: rule `VC_Shares_balance_change`
5.For any address, the balance can increase only on mint, transfer,
transferFrom.
Implementation: rule `VC_Shares_balance_increase`
6.For any address, the balance can decrease only on burn, transfer,
transferFrom.
Implementation: rule `VC_Shares_balance_decrease`
7. Allowance can only change on transferFrom, approve, increaseAllowance,
decreaseAllowance.
Implementation: rule `VC_Shares_al lowance_change`
8. Sum of all balances should be equal totalSupply.
Implementation: invariant `VS_Shares_totalSupply_balances`
9.transferFrom should decrease allowance for the same amount as
transferred.
Implementation: rule `HLP_Shares_transferFrom_allowance`
10.Additive transfer. Balance change for msg.sender and recipient while do
transfer($amount$) should be the same as transfer($amount/2$) +
transfer($amount/2$).
Implementation: rule `HLP_Shares_additive_transfer`
11.Additive transferFrom. Balance change for sender and recipient while do
transferFrom($amount$) should be the same as transferFrom($amount/2$) +
transferFrom($amount/2$).
Implementation: rule `HLP_Shares_additive_transferFrom`
12.Additive mint. Balance change for recipient while do mint($amount$)
should be the same as mint($amount/2$) + mint($amount/2$).
Implementation: rule `HLP_Shares_additive_mint`
13.Additive burn. Balance change for recipient while do burn($amount$)
should be the same as burn($amount/2$) + burn($amount/2$).
Implementation: rule `HLP_Shares_additive_burn`
14.Additive increaseAllowance. Allowance change for spender while do
increaseAllowance($amount$) should be the same as
increaseAllowance($amount/2$) + increaseAllowance($amount/2$).
Implementation: rule `HLP_Shares_additive_increaseAllowance`

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 15

6. Verifications (cont.)

15.Additive decreaseAllowance. Allowance change for spender while do
decreaseAllowance($amount$) should be the same as
decreaseAllowance($amount/2$) + decreaseAllowance($amount/2$).
Implementation: rule `HLP_Shares_additive_decreaseAllowance`
16.Integrity of mint. Balance of recipient after mint($amount$) should be equal
to the balance of the recipient before mint + $amount$.
Implementation: rule `HLP_Shares_integrity_mint`
17.Integrity of burn. Balance of recipient after burn($amount$) should be equal
to the balance of the recipient before burn - $amount$.
Implementation: rule `HLP_Shares_integrity_burn`
18.Integrity of transfer. Balance of recipient and msg.sender after
transfer($amount$) should be updated for the exact amount that has been
requested for a transfer.
Implementation: rule `HLP_Shares_integrity_transfer`
19.Integrity of transferFrom. Balance of recipient and sender after
transferFrom($amount$) should be updated for the exact amount that has been
requested for a transferFrom.
Implementation: rule `HLP_Shares_integrity_transferFrom`
20.Integrity of increaseAllowance. Allowance of spender after
increaseAllowance($amount$) should be equal to the allowance of the spender
before increaseAllowance + $amount$.
Implementation: rule `HLP_Shares_integrity_increaseAllowance`
21.Integrity of decreaseAllowance. Allowance of spender after
decreaseAllowance($amount$) should be equal to the allowance of the spender
before decreaseAllowance - $amount$.
Implementation: rule `HLP_Shares_integrity_decreaseAllowance`
22.Integrity of approve. Allowance of spender after approve($amount$) should
be equal to the allowance of the spender before approve + $amount$.
Implementation: rule `HLP_Shares_integrity_approve`
23. Mint and Burn should revert if the sender is not the Ai16ZH address.
Implementation: rule `UT_Shares_min_burn_permissions`
24. Each action affects at most two users' balance.
Implementation: rule `RA_Shares_balances_update_correctness`

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 16

6. Verifications (cont.)

2. Shares Debt Token
Reports: Debt tokens variable changes, Debt tokens high level props

1.receiveAllowances should change only on setReceiveApproval,
decreaseReceiveAllowance, increaseReceiveAllowance, transferFrom.
Implementation: rule VC_SharesDebt_receiveAl lowances_change
2. receiveAllowances should increase only on setReceiveApproval,
increaseReceiveAllowance.
Implementation: rule VC_SharesDebt_receiveAl lowances_increase
3.receiveAllowances should decrease only on setReceiveApproval,
decreaseReceiveAllowance, transferFrom.
Implementation: rule VC_SharesDebt_rece iveAl lowances_decrease
4.Additive decreaseReceiveAllowance. receiveAllowances msg.sender after
decreaseReceiveAllowance(amount) should be the same as
decreaseReceiveAllowance(amount/2) + decreaseReceiveAllowance(amount/2).
Implementation: rule HLP_SharesDebt_addit ive_decreaseReceiveAl lowance
5.Additive increaseReceiveAllowance. receiveAllowances msg.sender after
increaseReceiveAllowance(amount) should be the same as
increaseReceiveAllowance(amount/2) + increaseReceiveAllowance(amount/2).
Implementation: rule HLP_SharesDebt_addit ive_increaseAl lowance
6.Integrity of setReceiveApproval. receiveAllowances of msg.sender after
setReceiveApproval(amount) should be the exact amount that has been requested
for a setReceiveApproval.
Implementation: rule HLP_SharesDebt_integrity_setReceiveApproval
7.Integrity of decreaseReceiveAllowance. receiveAllowances of msg.sender after
decreaseReceiveAllowance(amount) should be equal to the receiveAllowances of
the sender before request - amount.
Implementation: rule HLP_SharesDebt_integrity_decreaseReceiveAl lowance
8.Integrity of increaseReceiveAllowance. receiveAllowances of msg.sender after
increaseReceiveAllowance(amount) should be equal to the receiveAllowances of
the sender before request + amount or uint256.max.
Implementation: rule HLP_SharesDebt_integrity_increaseReceiveAl lowance

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 17

https://prover.certora.com/output/84762/27fbcee7d0672b592480/?anonymousKey=97d434beb2d8065614a0d23637337b73f714525e
https://prover.certora.com/output/84762/a7a46c749de11078f428/?anonymousKey=b5434a2912b9098f44bfdb296fbcdd37ac6c1bf4

6. Verifications (cont.)

6. Ai16ZH

1. High Level Properties
Reports: Ai16ZH high level properties - DebtToken, Ai16ZH high level properties -
CollateralOnlyToken, Ai16ZH high level properties - CollateralToken, Ai16ZH
high level properties - C o m m o n

1.Inverse deposit - withdraw for collateralToken. For any user, the balance before
deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_deposit_withdraw_collateral
2.Inverse deposit - withdrawFor for collateralToken. For any user, the balance before
deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_deposit_withdrawFor_collateral
3.Inverse depositFor - withdraw for collateralToken. For any user, the balance before
deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_depositFor_withdraw_collateral
4.Inverse depositFor - withdrawFor for collateralToken. For any user, the balance
before deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_depositFor_withdrawFor_collateral
5.Inverse deposit - withdraw for collateralOnlyToken. For any user, the balance
before deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_deposit_withdraw_collateralOnly
6.Inverse deposit - withdrawFor for collateralOnlyToken. For any user, the balance
before deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_deposit_withdrawFor_col lateralOnly
7.Inverse depositFor - withdraw for collateralOnlyToken. For any user, the balance
before deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_depositFor_withdraw_collateralOnly
8.Inverse depositFor - withdrawFor for collateralOnlyToken. For any user, the
balance before deposit should be equal to the balance after depositing and then
withdrawing the same amount.
Implementation: rule HLP_inverse_depositFor_withdrawFor_collateralOnly

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 18

https://vaas-stg.certora.com/output/84762/a5e9d6cdc45573f110c5/?anonymousKey=c5769a9c89b67cc2a5779c90b4bc6daa5bbabf94
https://vaas-stg.certora.com/output/84762/ebeed5365f39237f195f/?anonymousKey=1d767654e67b0614aa2ad16737b018d1fbb196f5
https://vaas-stg.certora.com/output/84762/ebeed5365f39237f195f/?anonymousKey=1d767654e67b0614aa2ad16737b018d1fbb196f5
https://vaas-stg.certora.com/output/84762/a3652960c8fb967ffa14/?anonymousKey=e1e48ea5a1797925e3ee9d17b3313c83d50491f3
https://vaas-stg.certora.com/output/84762/6e2d56b13f386920edaf/?anonymousKey=17dd52fb050374f410836c4e948e2cc37de1e606
https://vaas-stg.certora.com/output/84762/6e2d56b13f386920edaf/?anonymousKey=17dd52fb050374f410836c4e948e2cc37de1e606

6. Verifications (cont.)

9.Inverse borrow - repay for debtToken. For any user, the balance before
borrowing should be equal to the balance after borrowing and then repaying the
same amount.
Implementation: rule HLP_inverse_borrow_repay_debtToken
10.Inverse borrow - repayFor for debtToken. For any user, the balance before
borrowing should be equal to the balance after borrowing and then repaying the
same amount.
Implementation: rule HLP_inverse_borrow_repayFor_debtToken
11.Inverse borrowFor - repay for debtToken. For any user, the balance before
borrowing should be equal to the balance after borrowing and then repaying the
same amount.
Implementation: rule HLP_inverse_borrowFor_repay_debtToken
12.Inverse borrowFor - repayFor for debtToken. For any user, the balance before
borrowing should be equal to the balance after borrowing and then repaying the
same amount.
Implementation: rule HLP_inverse_borrowFor_repayFor_debtToken
13.Additive deposit for collateralToken, totalDeposits while do deposit(x + y)
should be the same as deposit(x) + deposit(y).
Implementation: rule HLP_additive_deposit_col lateral
14.Additive deposit for collateralOnlyToken, collateralOnlyDeposits while do
deposit(x + y) should be the same as deposit(x) + deposit(y).
Implementation: rule HLP_additive_deposit_col lateralOnly
15.A d d i t i v e d e p o s i t F o r f o r c o l l a t e r a l T o k e n , t o t a l D e p o s i t s w h i l e d o
depositFor(x + y) should be the same as depositFor(x) + depositFor(y).
Implementation: rule HLP_additive_depositFor_col lateral
16.Additive depositFor for collateralOnlyToken, collateralOnlyDeposits while do
depositFor(x + y) should be the same as depositFor(x) + depositFor(y).
Implementation: rule HLP_additive_depositFor_col lateralOnly
17. Additive withdraw for collateralToken, totalDeposits while do withdraw(x +
y) should be the same as withdraw(x) + withdraw(y).
Implementation: rule HLP_additive_withdraw_collateral
18.Additive withdraw for collateralOnlyToken, collateralOnlyDeposits while do
withdraw(x + y) should be the same as withdraw(x) + withdraw(y).
Implementation: rule HLP_additive_withdraw_collateralOnly
19.Additive withdrawFor for collateralToken, totalDeposits while do
withdrawFor(x + y) should be the same as withdrawFor(x) + withdrawFor(y).
Implementation: rule HLP_additive_withdrawFor_collateral

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 19

6. Verifications (cont.)

20.Additive withdrawFor for collateralOnlyToken, collateralOnlyDeposits while
do withdrawFor(x + y) should be the same as withdrawFor(x) + withdrawFor(y).
Implementation: rule HLP_additive_withdrawFor_collateralOnly
21.Additive borrow for debtToken, totalBorrowAmount while do borrow(x + y)
should be the same as borrow(x) + borrow(y).
Implementation: rule HLP_additive_borrow_debtToken
22.Additive borrowFor for debtToken, totalBorrowAmount while do
borrowFor(x + y) should be the same as borrowFor(x) + borrowFor(y).
Implementation: rule HLP_additive_borrowFor_debtToken
23.Additive repay for debtToken, totalBorrowAmount while do repay(x + y) should
be the same as repay(x) + repay(y).
Implementation: rule HLP_addit ive_repay_debtToken
24. Additive repayFor for debtToken, totalBorrowAmount while do repayFor(x
+ y) should be the same as repayFor(x) + repayFor(y).
Implementation: rule HLP_addit ive_repayFor_debtToken
25.Integrity of deposit for collateralToken, totalDeposits after deposit should be
equal to the totalDeposits before deposit + amount of the deposit.
Implementation: rule HLP_integrity_deposit_collateral
26.Integrity of deposit for collateralTokenOnly, collateralOnlyDeposits after deposit
s h o u l d b e equa l to the co l l ate ra l O n l y D e p o s i t s befo re d e p o s i t + a m o u nt o f the
deposit.
Implementation: rule HLP_integrity_deposit_col lateralOnly
27.Integrity of depositFor for collateralToken, totalDeposits after deposit should
be equal to the totalDeposits before deposit + amount of the deposit.
Implementation: rule HLP_integrity_depositFor_collateral
28.Integrity of depositFor for collateralOnlyToken, collateralOnlyDeposits after
deposit should be equal to the collateralOnlyDeposits before deposit + amount
of the deposit.
Implementation: rule HLP_integrity_depositFor_collateralOnly
29.Integrity of withdraw for collateralToken, totalDeposits after withdrawal should
be equal to the totalDeposits before withdrawal - the amount of the
withdrawal.
Implementation: rule HLP_integrity_withdraw_collateral
30.Integrity of withdraw for collateralOnlyToken, collateralOnlyDeposits after
withdrawal should be equal to the collateralOnlyDeposits before withdrawal - the
amount of the withdrawal.
Implementation: rule HLP_integrity_withdraw_collateralOnly

A i16Z H F or m a l Va l id a t ion R e p or t , J a n u a r y 2025 20

6. Verifications (cont.)

31.Integrity of withdrawFor for collateralToken, totalDeposits withdrawal should
be equal to the totalDeposits before withdrawal - the amount of the
withdrawal.
Implementation: rule HLP_integrity_withdrawFor_collateral
32.Integrity of withdrawFor for collateralOnlyToken, collateralOnlyDeposits after
withdrawal should be equal to the collateralOnlyDeposits before withdrawal - the
amount of the withdrawal.
Implementation: rule HLP_integrity_withdrawFor_collateralOnly
33.Integrity of borrow for debtToken, totalBorrowAmount after borrow should be
equal to the totalBorrowAmount before borrow + borrowed amount.
Implementation: rule HLP_integrity_borrow_debtToken
34.Integrity of borrowFor for debtToken, totalBorrowAmount after borrowFor should
be equal to the totalBorrowAmount before borrowFor + borrowed amount.
Implementation: rule HLP_integrity_borrowFor_debtToken
35.Integrity of repay for debtToken, totalBorrowAmount after repay should be
equal to the totalBorrowAmount before repay + repaid amount.
Implementation: rule HLP_integrity_repay_debtToken
36.Integrity of repayFor for debtToken, totalBorrowAmount after repayFor should
be equal to the totalBorrowAmount before repayFor + repaid amount.
Implementation: rule HLP_integrity_repayFor_debtToken
37. Deposit of the collateral will only update the balance of msg.sender.
Implementation: rule HLP_deposit_col lateral_update_only_sender
38. Deposit of the collateralOnly will only update the balance of msg.sender.
Implementation: rule HLP_deposit_col lateralOnly_update_only_sender
39. DepositFor of the collateral will only update the balance of _depositor.
Implementation: rule HLP_depositFor_col lateral_update_only_depositor
40. DepositFor of the collateralOnly will only update the balance of
_depositor.
Implementation: rule HLP_depositFor_col lateralOnly_update_only_depositor
41. Withdrawing of the collateral will only update the balance of msg.sender.
Implementation: rule HLP_withdraw_collateral_update_only_sender
42. Withdrawing of the collateralOnly will only update the balance of
msg.sender.
Implementation: rule HLP_withdraw_collateralOnly_update_only_sender
43. WithdrawFor of the collateral will only update the balance of _depositor.
Implementation: rule HLP_withdrawFor_col lateral_update_only_depositor
44. WithdrawFor of the collateralOnly will only update the balance of
_depositor.
Implementation: rule HLP_withdrawFor_col lateralOnly_update_only_depositor

Ai16ZH Formal Validation Report, January 2025 21

6. Verifications (cont.)

45. Borrow will only update the balance of the msg.sender for debtToken.
Implementation: rule HLP_borrow_update_only_sender
46. BorrowFor will only update the balance of the borrower for debtToken.
Implementation: rule HLP_borrowFor_update_only_borrower
47. Repay will only update the balance of the msg.sender for debtToken.
Implementation: rule HLP_repay_update_only_sender
48. RepayFor will only update the balance of the borrower for debtToken.
Implementation: rule HLP_repayFor_update_only_borrower
49.FlashLiquidate will only update the balances of the provided users.
isSolventBefore == false => Balance for CollateralOnlyToken, CollateralToken should
be 0.
Implementation: rule HLP_flashl iquidate_shares_tokens_bal_zero

2. Risk Assessment
Reports: RA_Ai16ZH_no_double_withdraw,
RA_Ai16ZH_no_negative_interest_for_loan,
RA_Ai16ZH_balance_more_than_collateralOnly_deposit,
RA_Ai16ZH_withdraw_all_shares, RA_Ai16ZH_borrowed_asset_not_depositable,
RA_Ai16ZH_repay_all_shares, RA_Ai16ZH_repay_all_collateral

1. A user cannot withdraw the same balance twice (double spending).
Implementation: rule RA_Ai16ZH_no_double_withdraw
2.A user should not be able to repay a loan with less amount than he
borrowed.
Implementation: rule RA_Ai16ZH_no_negative_interest_for_loan
3. With collateralOnly deposit, there is no scenario when the balance of a
contract is less than that deposit amount.
Implementation: rule RA_Ai16ZH_balance_more_than_col lateralOnly_deposit
4. A user should not be able to deposit an asset that he borrowed in the

Ai16ZH.
Implementation: rule RA_Ai16ZH_borrowed_asset_not_depositable
5. A user has no debt after being repaid with max_uint256 amount.
Implementation: rule RA_Ai16ZH_repay_al l_shares
6. A user can withdraw all with max_uint256 amount.
Implementation: rule RA_Ai16ZH_withdraw_all_shares

3. State Transition
Reports: Ai16ZH state transition - ST_Ai16ZH_asset_init_shares_tokes, Ai16ZH state
transition
- ST_Ai16ZH_asset_reactivate, Ai16ZH state transition - ST_Ai16ZH_mint_debt,
Ai16ZH state transition - ST_Ai16ZH_totalSupply_collateralOnlyDeposits,
Ai16ZH state transition - ST_Ai16ZH_totalSupply_totalBorrowAmount, Ai16ZH
state transition -
ST_Ai16ZH_mint_shares, Ai16ZH state transition -
ST_Ai16ZH_totalSupply_totalDeposits

Ai16ZH Formal Validation Report, January 2025 22

https://vaas-stg.certora.com/output/40302/8d7b39801d245b1f7639/?anonymousKey=483feb1d1c6b625f0b8ea9ad36cc4d5026cf97c3
https://vaas-stg.certora.com/output/40302/5d1f49c45258381c8df7/?anonymousKey=83e4df8b168f77458a1ad8811be0f14c03d5e913
https://vaas-stg.certora.com/output/40302/762339476cdc18defe70/?anonymousKey=cb9b974f0c19c4cbca7639383cd717310fde579e
https://vaas-stg.certora.com/output/40302/97b44c93c60c64539714/?anonymousKey=137b34b81024d45a820154af8c73bfb47829eab0
https://vaas-stg.certora.com/output/40302/1a90a609bdfe2d5730dc/?anonymousKey=ddec43e27006f7f19a9dea4c27f907258b957899
https://vaas-stg.certora.com/output/40302/3bbfd2962a8b7105e2a0/?anonymousKey=b7f19086cf7be36c68a48031d22fc6409d201231
https://vaas-stg.certora.com/output/40302/0fe684297c425b63bab1/?anonymousKey=bd06c3c53b3f0ffb959dc3338445f160f2ed6d72
https://vaas-stg.certora.com/output/84762/d09dd3ca7300730d356a/?anonymousKey=59866d5691b993aab08443de6fe9893b3e1b2fbc
https://vaas-stg.certora.com/output/84762/d12aaaad0f7a7091647e/?anonymousKey=6f39ea2992f6ab2d48499879969d081803bf3a98
https://vaas-stg.certora.com/output/84762/d12aaaad0f7a7091647e/?anonymousKey=6f39ea2992f6ab2d48499879969d081803bf3a98
https://vaas-stg.certora.com/output/84762/b284c8972001eec96dc8/?anonymousKey=efaaf68fddfccc52379d25765b66b4778597b370
https://vaas-stg.certora.com/output/84762/37a37e2f5f5628724ccc/?anonymousKey=7f2aad65aeaed2a75683b569d3a4520d8c491099
https://vaas-stg.certora.com/output/84762/aeda051b127e6647bca3/?anonymousKey=6fa98d75677514bfbaf621d37d1012e1f6e1351f
https://vaas-stg.certora.com/output/84762/610561afcdfcd1720568/?anonymousKey=f9f179619fadb53da22c609ddc02e864c2691ccf
https://vaas-stg.certora.com/output/84762/610561afcdfcd1720568/?anonymousKey=f9f179619fadb53da22c609ddc02e864c2691ccf
https://vaas-stg.certora.com/output/84762/8f68d0be0a25bea4bb18/?anonymousKey=9241e9870f06ea17ca1f1372eaf930367b77d8df

6. Verifications (cont.)

1. CollateralToken.totalSupply is changed => totalDeposits is changed.
Implementation: rule ST_Ai16ZH_totalSupply_totalDeposits
2. CollateralOnlyToken.totalSupply is changed => collateralOnlyDeposits is
changed.
Implementation: rule ST_Ai16ZH_totalSupply_col lateralOnlyDeposits
3. DebtToken.totalSupply is changed => totalBorrowAmount is changed.
Implementation: rule ST_Ai16ZH_totalSupply_totalBorrowAmount
4. AssetInterestData.interestRateTimestamp is changed and it was not 0 and
AssetInterestData.totalBorrowAmount was not 0 =>
AssetInterestData.totalBorrowAmount is changed.
Implementation: rule
ST_Ai16ZH_interestRateTimestamp_totalBorrowAmount_dependency
5.A s s e t I n t e r e s t D a t a . i n t e r e s t R a t e T i m e s t a m p i s c h a n g e d a n d i t w a s n o t 0 a n d
Ai16ZHRepository.protocolShareFee() was not 0 => AssetInterestData.totalDeposits
and AssetInterestData.protocolFees also changed.
Implementation: rule ST_Ai16ZH_interestRateTimestamp_fee_dependency
6. CollateralToken.totalSupply or collateralOnlyToken.totalSupply increased
=> deposit amount is not zero and asset is active.
Implementation: rule ST_Ai16ZH_mint_shares
7. DebtToken.totalSupply increased => borrow amount is not zero and asset
is active.
Implementation: rule ST_Ai16ZH_mint_debt
8. AssetInterestData.status is changed to active and
AssetStorage.collateralToken and AssetStorage.collateralOnlyToken and
AssetStorage.debtToken where empty => AssetStorage.collateralToken and
AssetStorage.collateralOnlyToken and AssetStorage.debtToken should not be empty
and different.
Implementation: rule ST_Ai16ZH_asset_init_shares_tokes
9. AssetInterestData.status is changed to active and
AssetStorage.collateralToken and AssetStorage.collateralOnlyToken and
AssetStorage.debtToken where not empty => AssetStorage.collateralToken and
AssetStorage.collateralOnlyToken and AssetStorage.debtToken should not update.
Implementation: rule ST_Ai16ZH_asset_reactivate

Ai16ZH Formal Validation Report, January 2025 23

6. Verifications (cont.)

4. Valid States
Reports: Ai16ZH valid states

1. TotalDeposits is zero <=> collateralToken.totalSupply is zero.
Implementation: rule VS_Ai16ZH_totalDeposits_totalSupply
2. CollateralOnlyDeposits is zero <=> collateralOnlyToken.totalSupply is zero.
Implementation: rule VS_Ai16ZH_col lateralOnlyDeposits_totalSupply
3. TotalBorrowAmount is zero <=> debtToken.totalSupply is zero.
Implementation: rule VS_Ai16ZH_totalBorrowAmount_totalSupply
4. AssetInterestData.lastTimestamp is zero =>
AssetInterestData.protocolFees is zero.
Implementation: rule VS_Ai16ZH_lastTimestamp_protocolFees
5. AssetInterestData.protocolFees increased =>
AssetInterestData.lastTimestamp and AssetStorage.totalDeposits are increased too.
Implementation: rule VS_Ai16ZH_protocolFees
6. AssetInterestData.totalBorrowAmount is not zero =>
AssetStorage.totalDeposits is not zero.
Implementation: rule VS_Ai16ZH_totalBorrowAmount
7. AssetInterestData.protocolFees is zero =>
AssetInterestData.harvestedProtocolFees is zero.
Implementation: rule VS_Ai16ZH_lastTimestamp_protocolFees_zero
8.AssetInterestData.status is active => AssetStorage.collateralToken is not empty
and AssetStorage.collateralOnlyToken is not empty and AssetStorage.debtToken
is not empty and allAi16ZHAssets.length > 0.
Implementation: rule VS_Ai16ZH_act ive_asset

5. Variable Changes
Reports: Ai16ZH variable changes - VariableChanges, Ai16ZH variable
changes - VariableChangesWithoutInterest, Ai16ZH variable changes -
VariableChangesDebtToken, Ai16ZH variable changes -
VariableChangesCollateralOnlyToken, Ai16ZH variable
changes - VariableChangesCollateralToken

1.AssetStorage.totalDeposits can only change on deposit, depositFor,
withdraw, withdrawFor, flashLiquidate, repay, repayFor, borrow, borrowFor,
accrueInterest.
Implementation: rule VC_Ai16ZH_totalDeposits

Ai16ZH Formal Validation Report, January 2025 24

https://vaas-stg.certora.com/output/40302/00b793414b859a9fc5ed/?anonymousKey=70586193c6158b3f9d5003e2a577de9d7683ebeb
https://vaas-stg.certora.com/output/84762/c4b9b4c5dfe722bd3a68/?anonymousKey=72831c475342c977a95f5b748dc32e361639ee63
https://vaas-stg.certora.com/output/84762/b6a3a78b5c14828fdf5d/?anonymousKey=cfdf3d6d9f9a5f93680eb947c71b41b7dbd3db61
https://vaas-stg.certora.com/output/84762/b6a3a78b5c14828fdf5d/?anonymousKey=cfdf3d6d9f9a5f93680eb947c71b41b7dbd3db61
https://vaas-stg.certora.com/output/84762/f086b3021e77a0b1854d/?anonymousKey=2939ed20af8fe6fe12740179c2588b725a339422
https://vaas-stg.certora.com/output/84762/f086b3021e77a0b1854d/?anonymousKey=2939ed20af8fe6fe12740179c2588b725a339422
https://vaas-stg.certora.com/output/84762/fc656efcad5070dce4d9/?anonymousKey=d7ead19977503f39f351f9fa76dcbe98d62cca14
https://vaas-stg.certora.com/output/84762/fc656efcad5070dce4d9/?anonymousKey=d7ead19977503f39f351f9fa76dcbe98d62cca14
https://vaas-stg.certora.com/output/84762/6cfd384d17d5704a3b48/?anonymousKey=60d831e504af9838ef8b938aa8c6b265cf2dec30
https://vaas-stg.certora.com/output/84762/6cfd384d17d5704a3b48/?anonymousKey=60d831e504af9838ef8b938aa8c6b265cf2dec30

6. Verifications (cont.)

2. AssetStorage.totalDeposits without _accrueInterest can only change on
deposit, depositFor, withdraw, withdrawFor, flashLiquidate.
Implementation: rule VC_Ai16ZH_totalDeposits_without_interest
3.AssetStorage.collateralOnlyDeposits can only change on deposit,
depositFor, withdraw, withdrawFor, flashLiquidate.
Implementation: rule VC_Ai16ZH_col lateralOnlyDeposits
4.AssetStorage.totalBorrowAmount can only change on deposit, depositFor,
withdraw, withdrawFor, flashLiquidate, repay, repayFor, borrow, borrowFor,
accrueInterest.
Implementation: rule VC_Ai16ZH_totalBorrowAmount
5. AssetStorage.totalBorrowAmount without _accrueInterest can only change
on deposit, depositFor, withdraw, withdrawFor.
Implementation: rule VC_Ai16ZH_totalBorrowAmount_without_interest
6.AssetInterestData.harvestedProtocolFees can only change on
harvestProtocolFees.
Implementation: rule VC_Ai16ZH_harvestedProtocolFees
7.AssetInterestData.protocolFees can only change on deposit, depositFor,
withdraw, withdrawFor, flashLiquidate, repay, repayFor, borrow, borrowFor,
accrueInterest.
Implementation: rule VC_Ai16ZH_protocolFees
8. AssetInterestData.protocolFees without _accrueInterest can only change
on borrow, borrowFor.
Implementation: rule VC_Ai16ZH_protocolFees_without_interest
9.AssetInterestData.interestRateTimestamp can only change on deposit,
depositFor, withdraw, withdrawFor, flashLiquidate, repay, repayFor, borrow,
borrowFor, accrueInterest.
Implementation: rule VC_Ai16ZH_interestRateTimestamp
10.AssetInterestData.interestRateTimestamp should not change in the same block.
Implementation: rule VC_Ai16ZH_interestRateTimestamp_in_the_same_block
11. AssetInterestData.status can only change on initAssetsTokens,
syncBridgeAssets.
Implementation: rule VC_Ai16ZH_asset_status
12.A s s e t S t o r a g e . c o l l a t e r a l To k e n a n d A s s e t S t o r a g e . c o l l a t e r a l O n l y To k e n a n d
AssetStorage.debtToken c a n only c h a n g e on in i tAssetsTokens , sy n c B r i d g e A s s e t s .
Implementation: rule VC_Ai16ZH_shares_tokens_change

Ai16ZH Formal Validation Report, January 2025 25

6. Verifications (cont.)

13.CollateralToken.totalSupply can only change on deposit, depositFor,
withdraw, withdrawFor, flashLiquidate.
Implementation: rule VC_Ai16ZH_col lateral_totalSupply_change
14.CollateralOnlyToken.totalSupply can only change on deposit, depositFor,
withdraw, withdrawFor if _collateralOnly is true and on flashLiquidate.
Implementation: rule VC_Ai16ZH_col lateralOnly_totalSupply_change
15. DebtToken.totalSupply can only change on borrow, borrowFor, repay,
repayFor.
Implementation: rule VC_Ai16ZH_debt_totalSupply_change
16. CollateralToken.totalSupply and AssetStorage.totalDeposits should
increase only on deposit, depositFor.
Implementation: rule VC_Ai16ZH_col lateral_totalDeposits_increase
17. CollateralOnlyToken.totalSupply and AssetStorage.collateralOnlyDeposits
should increase only on deposit, depositFor if _collateralOnly is true.
Implementation: rule VC_Ai16ZH_col lateralOnly_col lateralOnlyDeposits_increase
18. CollateralToken.totalSupply and AssetStorage.totalDeposits should
decrease only on withdraw, withdrawFor, flashLiquidate.
Implementation: rule VC_Ai16ZH_col lateral_totalDeposits_decrease
19.CollateralOnlyToken.totalSupply and AssetStorage.collateralOnlyDeposits should
decrease only on withdraw, withdrawFor if _collateralOnly is true and on
flashLiquidate.
Implementation: rule VC_Ai16ZH_col lateralOnly_col lateralOnlyDeposits_decrease
20. DebtToken.totalSupply and AssetStorage.totalBorrowAmount should
increase only on borrow, borrowFor.
Implementation: rule VC_Ai16ZH_debt_totalBorrow_increase
21. DebtToken.totalSupply and AssetStorage.totalBorrowAmount should
decrease only on repay, repayFor.
Implementation: rule VC_Ai16ZH_debt_totalBorrow_decrease
22. AssetInterestData.interestRateTimestamp should only increase.
Implementation: rule VC_Ai16ZH_interestRateTimestamp_increase
23.The Ai16ZH balance for a particular asset should only increase on deposit,
depositFor,
repay, repayFor. The Ai16ZH b a l a n c e for a par t i cu lar a s s e t s h o u l d only d e c r e a s e
o n w i t h d r a w , w i t h d r a w F o r , b o r r o w , b o r r o w F o r , fl a s h L i q u i d a t e ,
harvestProtocolFees. Implementation: rule VC_Ai16ZH_balance

Ai16ZH Formal Validation Report, January 2025 26

6. Verifications (cont.)

7. Ai16ZH Factory

Reports: Ai16ZH factory

1. Ai16ZHRepository can only change on initRepository.\
Implementation: rule `VC_Ai16ZHFactory_Ai16ZHRepository_change`
2. Ai16ZHRepository can be initialized once. The second attempt should

revert.\
Implementation: rule `HLP_Ai16ZHRepository_Ai16ZHRepository_change`
3. Only the Ai16ZHRepository can create a Ai16ZH. \
Implementation: rule `UT_Ai16ZHRepository_createAi16ZH_permissions`

8. Ai16ZH Repository

1. Valid States
Reports: Ai16ZH Repository - ValidStates

1. Solvency precision decimals are 10e18 and can not be changed.
Implementation: invariant VS_solvencyPrec is ionDecimals
2. Default liquidation threshold  (0, 10^18].
Implementation: invariant VS_defaultLiquidationThreshold
3.For every Ai16ZH and every asset assetConfig liquidation threshold  (0,
10^18].
Implementation: invariant VS_Ai16ZHLiquidationThreshold
4. Default max loan to value  (0, 10^18].
Implementation: invariant VS_defaultMaxLTV
5. For every Ai16ZH and every asset assetConfig max loan to value  (0,

10^18].
Implementation: invariant VS_Ai16ZHMaxLTV
6. Default liquidation threshold is greater than default max loan to value.
Implementation: invariant VS_defaultLiquidationThresholdGreaterMaxLTV
7. For every Ai16ZH and every asset assetConfig liquidation threshold is

greater
than max loan to value.
Implementation: invariant VS_Ai16ZHLiquidationThresholdGreaterMaxLTV
8.For every Ai16ZH and every asset assetConfig.liquidationThreshold == 0 <=>
assetConfig.maxLoanToValue == 0.
Implementation: invariant VS_halfOfAssetConfigIsNeverEmpty
9. Entry fee  (0, Solvency._PRECISION_DECIMALS].
Implementation: invariant VS_entryFee

Ai16ZH Formal Validation Report, January 2025 27

https://vaas-stg.certora.com/output/84762/137930171742a964f09e/?anonymousKey=fa82ffb3748b323a3cbc3912eea1032a587395d7
https://vaas-stg.certora.com/output/84762/6d59838b01720e95b32b/?anonymousKey=ded4801a6147b6d80ef8d3e76544c1965b40f6af

6. Verifications (cont.)

10. Protocol share fee  (0, Solvency._PRECISION_DECIMALS].
Implementation: invariant VS_protocolShareFee
11. Protocol liquidation fee  (0, Solvency._PRECISION_DECIMALS].
Implementation: invariant VS_protocolL iquidationFee
12. Protocol liquidation fee  (0, Solvency._PRECISION_DECIMALS].
Implementation: invariant VS_protocolL iquidationFee
13.Default Ai16ZH factory is never equal to zero address. If the factory version for
an asset is not the default one, the Ai16ZH factory for this asset can be zero only if
unregisterAi16ZHVersion() is called. State after constructor call is not proved, but
checked manually.
Implementation: rule VS_complexInvariant_Ai16ZHFactory

2. Variable Changes
Reports: Ai16ZH Repository - VariableChanges

1.Default liquidation threshold can be set only by
setDefaultLiquidationThreshold. ((Default liquidation threshold changed) <=>
(f.selector == setDefaultLiquidationThreshold && msg.sender == owner)).
Implementation: rule VCH_setDefaultLiquidationThresholdOnlyOwner
2.Default max loan to value can be set only by setDefaultLiquidationThreshold.
((default max loan to value changed) <=> (f.selector
== setDefaultMaximumLTV && msg.sender == owner)).
Implementation: rule VCH_setDefaultMaximumLTVOnlyOwner
3.Default interest rate model can be set only by setDefaultInterestRateModel.
((default max loan to value changed) <=> (f.selector == setDefaultInterestRateModel
&& msg.sender == owner)).
Implementation: rule VCH_setDefaultInterestRateModelOnlyOwner
4.Price providers repository can be set only by setPriceProvidersRepository. ((pr ice
provider repos i tor y c h a n g e d) <=> (f.selector == s etP r i ceP rov i d e rs Re p o s i to r y &&
msg.sender == owner)).
Implementation: rule VCH_setPriceProvidersRepositoryOnlyOwner
5.Router can be set only by setRouter. ((router changed) <=> (f.selector ==
setRouter && msg.sender == owner)).
Implementation: rule VCH_setRouterOnlyOwner
6.Notification receiver can be set only by setNotificationReceiver.
((notification receiver changed) <=> (f.selector == setNotificationReceiver &&
msg.sender == owner)).
Implementation: rule VCH_setNotificationReceiverOnlyOwner

Ai16ZH Formal Validation Report, January 2025 28

https://vaas-stg.certora.com/output/84762/ca63b85713e41188b666/?anonymousKey=d94b167dd00a2c17b9421dea5f0cf856db68cbdb

6. Verifications (cont.)

7.Tokens factory can be set only by setTokensFactory. ((tokens factory
changed) <=> (f.selector == setTokensFactory && msg.sender == owner)).
Implementation: rule VCH_setTokensFactoryOnlyOwner
8. Asset config updated <=> msg.sender is the owner.
Implementation: rule VCH_assetConfigOnlyOwner
9.((new asset in getBridgeAssets()) <=> (f.selector == addBridgeAsset &&
msg.sender == owner)) && ((asset is removed from getBridgeAssets()) <=>
(f.selector == removeBridgeAsset && msg.sender == owner)).
Implementation: rule VCH_br idgeAssets
10.((new asset in getRemovedBridgeAssets()) <=> (f.selector ==
removeBridgeAsset && msg.sender == owner)) && ((asset is removed from
getRemovedBridgeAssets()) <=> (f.selector == addBridgeAsset && msg.sender ==
owner)).
Implementation: rule VCH_removedBr idgeAssets
11.When registerAi16ZHVersion(..., isDefault) is called. msg.sender == owner &&
(latest version is default <=> isDefault == true).
Implementation: rule VCH_registerAi16ZHVersionDefaultIsLatest
12.If t h e d efa u l t A i 1 6 Z H ve rs i o n i s c h a n g e d to n ew D efa u l t A i 1 6 Z H Ve rs i o n , t h e n
msg.sender == owner && (f.selector == registerAi16ZHVersion(...,isDefault = true)
|| f . s e l e c t o r = = s e t D e f a u l t A i 1 6 Z H V e r s i o n (. . . , A i 1 6 Z H V e r s i o n =
newDefaultAi16ZHVersion)).
Implementation: rule VCH_defaultAi16ZHVersion

3. Unit Tests
Reports: Ai16ZH Repository - UnitTests

1.For every asset (getAi16ZH(asset) == 0 || Ai16ZHReverse(getAi16ZH(asset)) == asset
|| getAi16ZH(asset) == bridgePool()).
Implementation: invariant UT_getAi16ZHReverseAi16ZH
2. If the asset is a removed bridge asset, it is not a bridge asset.
Implementation: invariant UT_removedBridgeAssetIsNotBridge
3. If the asset is a bridge asset, it is not a removed bridge asset.
Implementation: invariant UT_bridgeAssetIsNotRemoved
4.Ai16ZH can be created for an asset in all cases, except (getAi16ZH(asset) != 0 ||
assetIsABridge && (br idgeAssetsAmount == 1 || bridgePool != 0)). State after
constructor call is not proved, but checked manually.
Implementation: invariant UT_complexInvariant_ensureCanCreateAi16ZHFor

Ai16ZH Formal Validation Report, January 2025 29

https://vaas-stg.certora.com/output/84762/48df9813c68f08f19423/?anonymousKey=af03581e4a352998693e35e7ae1c09364e32653c

6. Verifications (cont.)

5. If the asset is a bridge asset, then Ai16ZH for this asset is not yet created
or

the Ai16ZH is a bridge pool.
Implementation: invariant UT_assetIsBridgeThenAi16ZHIsBridgePool
6. If the asset is a removed bridge asset, then Ai16ZH for this asset is not yet
created or the Ai16ZH is NOT a bridge pool.
Implementation: rule UT_assetIsBridgeThenAi16ZHIsBridgePool

9. Tokens Factory

Reports: TokensFactory

1. _Ai16ZHRepository can only change on initRepository.
Implementation: rule VC_TokensFactory_Ai16ZHRepository_change
2. _Ai16ZHRepository can be initialized once. The second attempt should

revert.
Implementation: rule HLP_TokensFactory_Ai16ZHRepository_change
3. createShareCollateralToken should revert if msg.sender != Ai16ZH address.
Implementation: rule UT_TokensFactory_createShareCollateralToken_only_Ai16ZH
4. createShareDebtToken should revert if msg.sender != Ai16ZH address.
Implementation: rule UT_TokensFactory_createShareDebtToken_only_Ai16ZH
5. _Ai16ZHRepository can't be set to zero address if it was not zero.
Implementation: rule RA_TokensFactory_Ai16ZHRepository_not_zero
6. Any Ai16ZH should be able to create ShareCollateral and ShareDebt tokens.
Implementation: rule RA_TokensFactory_any_Ai16ZH_can_create_shares

1 0 . Gu ard e d L a u n c h

Reports: Guarded launch

1.maxLiquidity.globalLimit can only change on setLimitedMaxLiquidity() call.
globalLimit changed => f.selector == setLimitedMaxLiquidity.
Implementation: rule VC_GuardedLaunch_globalLimit
2.maxLiquidity.defaultMaxLiquidity can only change on
setDefaultAi16ZHMaxDepositsLimit() call. defaultMaxLiquidity changed => f.selector
== setDefaultAi16ZHMaxDepositsLimit.
Implementation: rule VC_GuardedLaunch_defaultMaxLiquidity

Ai16ZH Formal Validation Report, January 2025 3 032

https://vaas-stg.certora.com/output/84762/98f91d4a5d0c630721c0/?anonymousKey=50cfc4f4e0930a59680b751dafcf2d7cdafc38cb
https://prover.certora.com/output/84762/a8943107862d93905c57/?anonymousKey=90cd26bcbc59ed05266a66d257a800216c729edd

6. Verifications (cont.)

3.For every Ai16ZH and it's every asset Ai16ZHMaxLiquidity can only change on
setAi16ZHMaxDepositsLimit() call. Ai16ZHMaxLiquidity changed => f.selector ==
setAi16ZHMaxDepositsLimit.
Implementation: rule VC_GuardedLaunch_Ai16ZHMaxLiquidity
4.GlobalPause can only change on setGlobalPause() call. GlobalPause
changed => f.selector == setGlobalPause.
Implementation: rule VC_GuardedLaunch_globalPause
5.For every Ai16ZH and it's asset Ai16ZHPause can only change on
setAi16ZHPause() call. Ai16ZHPause changed => f.selector == setAi16ZHPause.
Implementation: rule VC_GuardedLaunch_Ai16ZHPause
6. Only owner can call setLimitedMaxLiquidity().
Implementation: rule UT_GuardedLaunch_setLimitedMaxLiquidity_onlyOwner
7. Only owner can call setDefaultAi16ZHMaxDepositsLimit().
Implementation: rule
UT_GuardedLaunch_setDefaultAi16ZHMaxDepositsLimit_onlyOwner
8. Only owner can call setAi16ZHMaxDepositsLimit().
Implementation: rule UT_GuardedLaunch_setAi16ZHMaxDepositsLimit_onlyOwner
9. Only owner can call setGlobalPause().
Implementation: rule UT_GuardedLaunch_setGlobalPause_onlyOwner
10. Only owner can call setAi16ZHPause().
Implementation: rule UT_GuardedLaunch_setAi16ZHPause_onlyOwner
11. For any Ai16ZH and any asset we must be sure that after it was paused we

can
unpause it.
Implementation: rule RA_GuardedLaunch_Ai16ZH_pause_unpause
12. If system been paused we must be sure that we can unpause it.
Implementation: rule RA_GuardedLaunch_Global_pause_unpause

1 1 . So l ve n cy

1. Unit Tests
Report: Unit tests

1. ConvertAmountsToValues return zero <=> amount * price <
DECIMAL_POINTS.
Implementation: rule UT_convertAmountsToValues_zeroSanity

Ai16ZH Formal Validation Report, January 2025 3 133

https://vaas-stg.certora.com/output/40302/fcf8ae40aff446b852d8/?anonymousKey=1e562784305668fd2745fef225d11ac79d045d0f

6. Verifications (cont.)

6.11.1.2 ConvertAmountsToValues returns array of the values, calculated as amount
* price / DECIMAL_POINTS.
Implementation: rule UT_convertAmountsToValues_concreteFormula
3.CalculateLiquidationFee returns liquidationFeeAmount == amount *
liquidationFee / DECIMAL_POINTS and newProtocolEarnedFees ==
protocolEarnedFees + liquidationFeeAmount. newProtocolEarnedFees is set to
type(uint256).max value in cas e of the overflow.
Implementation: rule UT_calculateLiquidationFee
4.GetUserBorrowAmount returns user debt share balance to amount
rounded up with compounded interest applied.
Implementation: rule UT_getUserBorrowAmount
5.GetUserCollateralAmount returns user collateral share balance to amount with
compounded interest applied. Protocol interest is excluded from compounded
interest.
Implementation: rule UT_getUserCollateralAmount
6.TotalBorrowAmountWithInterest returns totalBorrowAmount increased by
compounded interest.
Implementation: rule UT_totalBorrowAmountWithInterest
7. TotalDepositsWithInterest returns totalDeposits increased by compounded
interest. Protocol interest is excluded from compounded interest.
Implementation: rule UT_totalDepositsWithInterest

Ai16ZH Formal Validation Report, January 2025 3 234

